

Prof. Eve Mitleton-Kelly

Professor, London School of Economics, UK

Theories

Natural sciences

- Dissipative structures
- chemistry-physics (Prigogine)
- Autocatalytic sets
- evolutionary biology (Kauffman)
- Autopoiesis (self-generation)
- biology/cognition (Maturana)
- Chaos theory

Social sciences

- Increasing returns
- economics (B. Arthur)

Generic characteristics of complex

co-evolving

systems

- connectivity
- inter-dependence
- feedback
- emergence

- self-organisation
- space of possibilities
- co-evolution
- historicity & time
- far from equilibrium

creation of new order

Self-organization

TUDelft

an example in biology: Birds flocking

Self-organization in a human context



- Spontaneous 'coming together'
- Not directed or designed by someone outside the group
- The group decides what needs to be done, how, when ...
- Can be a source of innovation
- Self-organization ≠ self-management

Exploration of the space of possibilities

Exploration of new options, different ways of working and relating

TU Delft

Exploration of the space of possibilities

The search for a single 'optimum' strategy is neither possible nor desirable, in a changing or turbulent environment

Multiple micro-strategies

Essential for innovation

Co-evolution - An example in biology

Bumblebees and the flowers they pollinate have co-evolved so that both have become dependent on each other for survival

Co-evolution in a Social Ecosystem

- Co-evolution takes place within a social ecosystem
- If influence and change are entirely in one direction:
 'adaptation to' a changing environment
- Short-term adaptation may result in *long-term co-evolution*

Co-evolution in a Social Ecosystem

 Reciprocal influence which changes the behaviour of the interacting entities

(individuals, organisations, industries, economies, etc.)

Far-from-equilibrium

TUDelft

- Original work on dissipative by *Ilya* Prigogine, with Nicolis and Stengers
- Nobel Prize for reinterpreting the Second Law of Thermodynamics

(increase in entropy& irreversibility)

Point of bifurcation when system is pushed far-from-equilibrium

Summary of characteristics

When a system is pushed far-from-equilibrium the following characteristics come into play to create new order:

- Self-organisation
- Exploration of possible solutions at the critical point
- Co-evolution
- Emergence of new structure
- Coherence
- Precise behaviour can neither be predicted nor controlled

Summary of characteristics

Creation of new order:

= difference between:

'just' complicated and complex systems

Thank you for your attention!

Please post any questions you may have on our discussion forum

