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In	
  this	
  video	
  we	
  will	
  learn	
  more	
  about	
  laminar	
  and	
  turbulent	
  flow.	
  

Let’s	
  investigate	
  the	
  flow	
  over	
  a	
  very	
  thin	
  flat	
  plate	
  at	
  zero	
  angle	
  of	
  attack.	
  More	
  in	
  particular	
  
we	
  are	
  interested	
  in	
  the	
  drag	
  of	
  the	
  plate.	
  

Isaac	
  Newton	
  already	
  formulated	
  an	
  equation	
  for	
  the	
  shear	
  stress:	
  

The	
  shear	
  stress	
  tau	
  is	
  mu	
  times	
  the	
  velocity	
  gradient.	
  	
  

Mu	
  is	
  the	
  dynamic	
  viscosity	
  coefficient	
  or	
  in	
  short	
  viscosity	
  	
  

So	
  for	
  the	
  shear	
  stress	
  on	
  the	
  surface	
  of	
  a	
  flat	
  plate	
  we	
  are	
  looking	
  at	
  the	
  velocity	
  gradient	
  
near	
   the	
  wall	
   at	
   y=0.	
  Here	
   you	
   see	
   the	
  boundary	
   layer	
   velocity	
   profile	
  with	
   the	
   velocity	
   u	
  
varying	
  from	
  zero	
  at	
  the	
  surface,	
  to	
  the	
  undisturbed	
  free	
  stream	
  velocity	
  V	
  at	
  the	
  edge	
  of	
  the	
  
boundary	
  layer.	
  

Let	
  us	
  define	
  the	
  local	
  Reynolds	
  number:	
  it	
  is	
  defined	
  as	
  rho	
  times	
  v	
  times	
  x	
  divided	
  by	
  mu,	
  
with	
  x	
  running	
  along	
  the	
  flat	
  plate	
  starting	
  at	
  the	
  leading	
  edge.	
  

When	
  a	
  fluid	
  starts	
  to	
  flow	
  over	
  the	
  flat	
  plate	
  it	
  begins	
  to	
  form	
  a	
  laminar	
  boundary	
  layer.	
  The	
  
streamlines	
  are	
  smooth	
  and	
  regular.	
  The	
  flow	
  moves	
  in	
  neat	
  layers.	
  

At	
  some	
  distance	
  from	
  the	
  leading	
  edge	
  the	
  character	
  of	
  the	
  flow	
  has	
  changed	
  into	
  irregular,	
  
random	
  and	
  chaotic	
  movements.	
  This	
  is	
  a	
  turbulent	
  boundary	
  layer	
  

The	
   transition	
   process	
   from	
   laminar	
   to	
   turbulent	
   flow	
   is	
   a	
   complicated	
   mechanism	
   of	
  
growing	
  disturbances	
  in	
  the	
  flow.	
  We	
  will	
  talk	
  about	
  that	
  later.	
  

First	
  of	
  all	
  let	
  us	
  look	
  at	
  the	
  development	
  of	
  the	
  boundary	
  layer	
  thickness	
  along	
  the	
  plate.	
  

With	
  his	
  boundary	
  layer	
  theory,	
  Prandtl,	
  together	
  with	
  his	
  former	
  student	
  Blasius,	
  was	
  able	
  
to	
  simplify	
  the	
  Navier-­‐Stokes	
  equations	
   in	
  such	
  a	
  way	
  that	
  they	
  could	
  get	
  analytical	
  results	
  
for	
   a	
   laminar	
   boundary	
   layer.	
   From	
   this	
   theory	
   we	
   find	
   that	
   the	
   local	
   boundary	
   layer	
  
thickness	
  at	
  a	
  station	
  x	
  from	
  the	
  leading	
  edge	
  is	
  equal	
  to	
  5.2	
  times	
  x	
  divided	
  by	
  the	
  square	
  
root	
  of	
  the	
  local	
  Reynolds	
  number.	
  

So,	
  starting	
  at	
  the	
  leading	
  edge	
  of	
  the	
  plate	
  he	
  boundary	
  layer	
  in	
  fact	
  develops	
  parabollically,	
  
with	
  the	
  square	
  root	
  of	
  x	
  

Now	
  let’s	
  look	
  at	
  a	
  flat	
  plate	
  with	
  length	
  L	
  and	
  a	
  width	
  of	
  1	
  m.	
  At	
  distance	
  x	
  from	
  the	
  leading	
  
edge	
  we	
  have	
  a	
  small	
  strip	
  of	
  the	
  plate	
  with	
  length	
  dx	
  in	
  flow	
  direction.	
  

The	
   total	
   force	
  on	
   the	
   entire	
   plate	
   is	
   the	
   total	
   pressure	
   force	
  plus	
   the	
   total	
   friction	
   force.	
  
Since	
  the	
  plate	
  is	
  flat	
  and	
  very	
  thin	
  and	
  under	
  zero	
  pressure	
  gradient,	
  we	
  have	
  no	
  pressure	
  
forces.	
  	
  



	
  

The	
  friction	
  force	
  on	
  the	
  element	
  dx	
  is	
  tau	
  times	
  the	
  area,	
  which	
  is	
  dx	
  times	
  1.	
  	
  

The	
  total	
  skin	
  friction	
  drag	
  on	
  the	
  plate	
  is	
  The	
  integral	
  from	
  the	
  leading	
  edge	
  to	
  the	
  trailing	
  
edge,	
  so	
  from	
  x=0	
  to	
  x=L	
  of	
  tau	
  times	
  dx	
  

From	
   laminar	
   boundary	
   layer	
   theory	
   we	
   can	
   find	
   that	
   the	
   local	
   skin	
   friction	
   coefficient,	
  
defined	
  as	
  the	
  shear	
  stress	
  over	
  the	
  undisturbed	
  dynamic	
  pressure	
  is	
  equal	
  to	
  0.664	
  divided	
  
by	
   the	
  squareroot	
  of	
   the	
   local	
  Reynolds	
  number.	
  So,	
   the	
  skin	
   friction	
  coefficient	
  decreases	
  
with	
  increasing	
  distance	
  from	
  the	
  leading	
  edge.	
  

To	
  calculate	
  the	
  entire	
  aerodynamic	
  force	
  we	
  must	
  integrate.	
  

Before	
   we	
   do	
   that,	
   let	
   us	
   first	
   have	
   another	
   look	
   at	
   the	
   Reynolds	
   number.	
   The	
   Reynolds	
  
number	
  based	
  on	
  a	
  length	
  L	
  was	
  defined	
  as	
  rho	
  times	
  V	
  times	
  L,	
  divided	
  by	
  mu,	
  right?	
  Well,	
  
the	
   density	
   and	
   the	
   dynamic	
   viscosity	
   (or	
   just	
   viscosity)	
   are	
   both	
   defined	
   by	
   the	
   same	
  
quantities	
   of	
   the	
   fluid,	
   for	
   instance	
   temperature	
   and	
   pressure.	
   So	
   we	
   can	
   define	
   the	
  
kinematic	
  viscosity,	
  nu,	
  by	
  the	
  viscosity	
  mu,	
  over	
  the	
  density	
  rho.	
  Then	
  we	
  can	
  simplify	
  the	
  
Reynolds	
  number	
  to	
  V	
  times	
  L	
  over	
  nu.	
  

At	
  a	
  low	
  Reynolds	
  number	
  we	
  have	
  viscous	
  flow	
  and	
  the	
  effect	
  of	
  friction	
  in	
  the	
  flow	
  is	
  high.	
  
It	
  decreases	
  with	
  increasing	
  Reynolds	
  number.	
  Now	
  back	
  to	
  the	
  flat	
  plate.	
  

So	
  Df,	
  the	
  friction	
  force	
  on	
  the	
  flat	
  plate,	
  is	
  the	
  integral	
  from	
  zero	
  to	
  the	
  length	
  L	
  

of	
  Cfx	
  times	
  q0	
  times	
  dx;	
  since	
  this	
  was	
  tau_w.	
  

We	
  know	
  that	
  Cfx	
  is	
  0.664	
  divided	
  by	
  the	
  square	
  root	
  of	
  Re_x.	
  

Together	
  this	
  forms	
  the	
  integral	
  from	
  zero	
  to	
  L	
  of	
  0.664	
  times	
  q0	
  times	
  dx	
  

divided	
  by	
  the	
  square	
  root	
  of	
  Re_x.	
  

We	
  assume	
  that	
  q	
  infinity	
  is	
  constant,	
  so	
  Df	
  is	
  0.664	
  times	
  q0	
  times	
  the	
  integral	
  from	
  zero	
  to	
  
L	
  of	
  dx	
  divided	
  by	
  the	
  square	
  root	
  of	
  Re_x.	
  

Now	
   Re_x	
   has	
   a	
   component	
   of	
   x.	
  We	
   can	
  write	
   that	
   as	
   the	
   integral	
   of	
   dx	
   divided	
   by	
   the	
  
square	
   root	
   of	
   x,	
   but	
   then	
   we	
   have	
   to	
   divide	
   the	
   other	
   part	
   by	
   the	
   square	
   root	
   of	
   the	
  
undisturbed	
  velocity	
  divided	
  by	
  the	
  undisturbed	
  kinematic	
  viscosity.	
  

The	
  integral	
  from	
  dx	
  divided	
  by	
  the	
  square	
  root	
  of	
  x	
  is	
  the	
  integral	
  from	
  

x	
  to	
  the	
  power	
  -­‐0.5	
  and	
  this	
  is	
  two	
  square	
  root	
  x.	
  

So	
  we	
  have	
  Df	
  is	
  0.664	
  times	
  q_infinity	
  divided	
  by	
  the	
  square	
  root	
  of	
  V_infinity	
  divided	
  by	
  

the	
  kinematic	
  viscosity	
  times	
  2	
  times	
  the	
  square	
  root	
  of	
  L.	
  

And	
  this	
  is	
  1.328	
  times	
  q_infinity	
  times	
  L	
  divided	
  by	
  the	
  square	
  root	
  of	
  V_infinity	
  times	
  



	
  

L	
  divided	
  by	
  the	
  kinematic	
  viscosity.	
  

Now,	
   you	
   may	
   recognize	
   here	
   that	
   what	
   is	
   under	
   the	
   square	
   root	
   here	
   is	
   of	
   course	
  
something	
  

that	
  has	
  to	
  do	
  with	
  the	
  Reynolds	
  number.	
  

So,	
  it	
  is	
  in	
  fact	
  1.328	
  times	
  q_infinity	
  times	
  L	
  divided	
  by	
  the	
  square	
  root	
  of	
  Re_L,	
  so	
  

the	
  Reynolds	
  number	
  based	
  on	
  the	
  flat	
  plate	
  length.	
  

Now	
  let	
  us	
  define	
  the	
  skin	
  friction	
  drag	
  coefficient.	
  

Cf	
  is	
  the	
  drag	
  force	
  divided	
  by	
  q_infinity	
  times	
  S.	
  

Now,	
  this	
  is	
  Df	
  divided	
  by	
  q_infinity	
  times	
  L	
  times	
  1,	
  because	
  we	
  have	
  a	
  width	
  of	
  the	
  

flat	
  plate	
  of	
  1m.	
  

Now,	
  if	
  we	
  write	
  Cf	
  with	
  the	
  result	
  of	
  the	
  drag	
  force	
  calculation,	
  then	
  we	
  get:	
  

Cf	
  =	
  1.328	
  divided	
  by	
  the	
  square	
  root	
  of	
  Re_L.	
  

So	
   we	
   have	
   found	
   the	
   skin	
   friction	
   coefficient	
   on	
   a	
   flat	
   plate	
   is	
   equal	
   to	
   1.328	
   over	
   the	
  
squareroot	
  of	
   the	
  Reynolds	
  number	
  based	
  on	
   the	
   flat	
  plate	
   length	
  L.	
   This	
  equation	
   is	
  only	
  
valid	
   for	
   low	
   speed,	
   incompressible	
   flow,	
   and	
   it	
   is	
   reasonably	
   accurate	
   for	
   high-­‐speed	
  
subsonic	
  flow.	
  

Unfortunately	
  there	
  is	
  no	
  exact	
  solution	
  for	
  the	
  turbulent	
  boundary	
  layer	
  

But	
  experiments	
  showed	
  that	
  the	
  boundary	
  layer	
  is	
  much	
  thicker	
  than	
  for	
  the	
  laminar	
  case	
  
and	
  that	
  the	
  skin	
  friction	
  coefficient	
  inversely	
  varies	
  with	
  the	
  Reynolds	
  number	
  to	
  the	
  power	
  
of	
  0.2	
  

So	
  if	
  we	
  put	
  the	
  two	
  together	
  we	
  see	
  that	
  the	
  friction	
  coefficient	
  in	
  a	
  turbulent	
  flow	
  is	
  much	
  
higher	
  than	
  in	
  a	
  laminar	
  flow.	
  	
  

A	
  turbulent	
  flat	
  plate	
  will	
  have	
  a	
  much	
  higher	
  total	
  skin	
  friction	
  drag.	
  

	
  

	
  

	
  


