Working Principle of a Semiconductor Based Solar Cell 2.4 Charge carrier excitation

Week 2

Arno Smets

Challenge the future

Conduction band

Valence band

Silicon Structure representation in 2D

Silicon Structure

 Hole
(bond missing valence electron)

Semiconductor Materials

		Р	I	N	VIA	VIIA	VIIIA ² He	
		5 B	6 C	7 N	8 0	9 F 18.998	10 Ne 20,180	
IB	IIB	13 AI 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 Cl 35,453	18 Ar 39,948	
29	30	31	32	33	34	35	36	
Cu	Zn	Ga	Ge	As	Se	Br	Kr	
53.546	65.38	69.723	72.64	74.922	78.96	79.904	83.798	
47	48	49	50	51	52	53	54	
Ag	Cd	In	Sn	Sb	Te		Xe	
107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29	
79	80	81	82	83	84	85	86	
Au	Hg	TI	Pb	Bi	Po	At	Rn	
196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]	

n-Doping

p-Doping

Typical Concentrations:

Majority Carriers Minority Carriers 10¹⁶ cm⁻³ 10⁴ cm⁻³

Si density in c-Si is $5\times10^{22}~cm^{-3}$

Law of Mass Action

- *n* = electron carrier concentration
- *p* = hole carrier concentration

Intrinsic material $n = p = n_{intrinsic} = 1,1X10^{10} cm^{-3}$

Doping: At Room Temperature: **n-type doping** $n_0 = N_D$

p₀ =

 $(n_{intrinsic})^2$

 n_0

 $n_0 p_0 = (n_{intrinsic})^2$

p-type doping

$$\boldsymbol{p_0} = \boldsymbol{N_A}$$
$$\boldsymbol{n_0} = \frac{(n_{intrinsic})^2}{p_0}$$

Example

Light Absorbtion in doped material

before light absorption:

 $\frac{\text{Majority Carriers}}{\text{Minority Carriers}} = \frac{10^{16} \text{ cm}^{-3}}{10^4 \text{ cm}^{-3}}$

Light Absorbtion in doped material

10¹¹ now electron-hole pairs:

Majority Carriers		10 ¹⁶ + 19 ²¹ cm ⁻³		
Minority Carriers	=	$10^{4} + 10^{11} \text{ cm}^{-3}$		

Thank you for your attention!

Challenge the future