Basic approach to design and optimize a PDO fermentation process

Technology for biobased products

Henk Noorman, DSM / Department of Biotechnology, Faculty of Applied Sciences

Design approach

Process reaction based on black box model (week 3)

- Bioreactor type and mode of operation
 - STR, BC or ALR
 - Batch, continuous or fed-batch

Reactor volume is determined by rate-limiting transport step

Large-scale design: Comparison of the transport phenomena

What is the rate-limiting transport step?

- Oxygen transfer
 - → minimize c_o gradients
- CO₂ removal
 - → minimize CO₂ inhibition
- Heat removal
 - → minimize T shocks
- Mixing
 - \rightarrow minimize c_s gradients

Defining what is most likely limiting factor

PDO Case, transport terms determined in previous units:

- Required $T_{N,0} = 193 \text{ mol/(m}^3 \cdot \text{h)}$ Actual $T_{N,0} = 135 \text{ mol/(m}^3 \cdot \text{h)}$
- $c_c = 7.0 \text{ mol/m}^3$
- $F_{loop} = 2.46 \text{ m}^3/\text{s}$
- $t_{mix} = 69 s$

Note: this all assumes low viscosity

Always design/select non-filamentous microorganisms so that the broth viscosity stays low. If not, transport rates can be 10-100× lower

PDO performance

Economy performance indicators

Titer kg PDO / tonne broth 228

Rate kg PDO/h / tonne broth 5.6

Yield kg PDO / kg glucose 0.33

(theoretical maximal) (0.528)

Low oxygen transfer zone k_La C_o* = 45 mol/

Glucose
hot spot

T cold spot

t_{circ} = 17 s

small) CO₂ gradient

High
oxygen
transfer zone
k_La C_o* = 172
mol/m³h

Cells are facing non-ideal conditions

Simulation of cell life-lines of 3 individual cells

Is the microorganism robust enough?

→ Scale-down, not scale-up

Is the microorganism robust enough?

→ Scale-down, not scale-up

General ways to improve the process:

Micro-organism

- Selection of robust microorganisms
- Metabolic Engineering

Physiology

Use black box model to better control critical process parameters

Reactor engineering

Hardware adjustments

Conclusion

Integral design requires quantification and comparison of:

O₂ transfer, CO₂ transfer, Heat transfer, Mixing to determine

- 1. the transport bottleneck
- 2. the full scale environment of the microorganism

Best rational optimization method:

Scale-down rather than scale-up

See you in the next unit!

