Mixing

Technology for biobased products

Henk Noorman, DSM / Department of Biotechnology, Faculty of Applied Sciences

One of four limiting transport steps: Mixing

Bubble column: liquid circulation patterns

Homogeneous → heterogeneous around superficial gas velocity of 0.04-0.08 m/s

Remember the superficial gas velocity? (m/s) $v_{gs} = \frac{F_g}{A_+}$

Scale-up

At lab scale: often homogeneous

At full scale: heterogeneous

Homogeneous

Heterogeneous

Stirred Tank Reactor (STR): Impeller designs

Gassed STR

Impeller power input (same gas flow rate)

Gas dispersion

Unaerated

Clinging cavity

Vortex cavity

Large cavity

Mixing experiment

Mixing experiment

Computer simulation

Mixing of tracer after injection

150 m³ bioreactor: 1 radial and 2 axial impellers

95% mixing time 1 minute or more

The effect of aeration (30 m³ reactor)

Dimensionless mixing equation

Constant for the **Aspect Ratio** Total power input (W/kg) same geometry Height/ and liquid flow diameter regime 95% mixing time (s) $Mixing\ number\ N_{mix} =$ Reactor diameter (m)

! Constant for specified geometries! Strongly dependent on aspect ratio

Van 't Riet, K, Van der Lans, RGJM, 2011. Mixing in bioreactor vessels. In: Comprehensive Biotechnology, Volume 2: 63-80 (2nd edition), Moo-Young (Ed.), Elsevier, Amsterdam

Comparison ALR, STR and BC

compared for 2 W/kg power input

The PDO process scheme

Power input:

$$\mathbf{e} = \frac{F_{n}RTln\left(\frac{p_{bottom}}{p_{top}}\right)}{broth \ mass}$$

$$= \frac{3561146 * 8.314 * 308 * ln\left(\frac{3.5}{1}\right)}{2250000/(3600 \ s/h)} = \mathbf{1.41 \ W/kg}$$

Bubble column with H/D = $2.34 \rightarrow N_{mix} = 16$

95% mixing time
$$t_{mix} = 16 \times 10.7^{2/3} / 1.41^{1/3} = 69 s$$

Mean broth circulation time $t_{mix}/4 = 17 \text{ s}$ Mean broth circulation velocity $v_L = H / 17 = 1.5 \text{ m/s}$ Broth circulation rate 2250 / 17 = 132 m³/s

Substrate concentration gradients

Concentration close to glucose feed inlet:

Mixing design

- BC: heterogeneous flow at full scale
- STR: several different flow regimes
- Low aspect ratios favourable for mixing
- Fewer (radial) stirrers better for mixing
- Aeration has minor influence at usual regime
- BC often better than STR
- ALR independent of aspect ratio

See you in the next unit!

