Heat transport

Henk Noorman, DSM / Department of Biotechnology, Faculty of Applied Sciences

One of four limiting transport steps: Heat removal

Heat sources and sinks in a fermenter

Evaporation

In aerobic processes usually surplus of heat generated of several MW (MJ/s)

This needs to be transferred to cooling water via:

- Cooling coil
- Vessel wall
- Cooling baffles
- Heat exchanger in external loop

Transport path of heat removal using coils (1)

Transport path of heat removal using coils (2)

3 steps in the removal heat path

Step 1. Convection

Convection in broth

Step 2. Transfer

Heat transfer through coil:

Coil outside boundary layer → Coil → Coil inside boundary layer

Step 3. Convection

Convection in cooling water

Transport path of heat removal using coils (2)

Two important terms:

Transport path of heat removal using coils (3)

Step 1 Convective heat transport in broth

Are there temperature gradients?

No!

Temperature T_{broth} only varies by ± 0.2°C

Transport path of heat removal using coils (4)

Step 2 and 3 How do they relate?

Transport path of heat removal using coils (5)

$$St_{heat} = \frac{UA_{T}}{\rho_{cw}c_{p}F_{cw}} \left(= \frac{(capacityStep2)}{(capacityStep3)} \right) = \frac{\text{Heat transfer capacity through coil}}{\text{Convection capacity in cooling water}}$$

0.1 St_{heat} 10

Transfer is bottleneck

$$T_{cw,out} = T_{cw,in}$$

Convection capacity >> Transfer capacity

Cooling water flow is bottleneck

$$T_{cw,out} = T_{Broth}$$

Convection capacity << Transfer capacity

Scale-up: $A_T/V_L = 4/T$ will get too small \rightarrow external cooling is needed

Transport path of heat removal using external cooling loop in the PDO process

Advantages

- Greater design freedom
- Faster heat transfer

Challenges

- Cold shocks
- Shear stress in the pump
- Oxygen and substrate depletion in the loop

Heat removal capacity $[kJ/s] = F_{loop} \rho C_p (T_{broth} - T_{return})$

$$F_{\text{loop}} = \frac{51434 \frac{\text{kJ}}{\text{s}}}{1000 \frac{\text{kg}}{\text{m}^3} \cdot 4.18 \frac{\text{kJ}}{\text{kg} \cdot ^{\circ}\text{C}} \cdot (35 \, ^{\circ}\text{C} - 30 \, ^{\circ}\text{C})} = 2.46 \frac{\text{m}^3}{\text{s}}$$

Cold shock every $\frac{2250 \text{ m}^3}{2.46 \frac{\text{m}^3}{\text{s}}} = 915 \text{ s} (\sim 15 \text{min})$

Heat transfer design

- T control requires good heat transfer design
- Process reaction: 450 kJ heat produced/mol O₂ consumed
- Evaporation: some cooling
- Impeller energy dissipation: 10-30% more heat
- Be aware of hot and cold spots at large scale!
- Sterilized feeds/compressed gas: hot!
- At megascale (>1000 m³) need for external loop cooling
- Cold shock: microbes may change metabolic network fluxes (e.g. through temperature-induced genetic switch for product formation)
- Oxygen or substrate depletion in the external loop

See you in the next unit!

