Gas transport

Technology for biobased products

Henk Noorman, DSM / Department of Biotechnology, Faculty of Applied Sciences

Two of four key transport-limiting steps: O_{2} supply and CO_{2} removal

O_{2} and CO_{2} in biological processes

O_{2} is an electron acceptor for energy production
1 glucose $+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
$192 \mathrm{~g}\left(\mathrm{O}_{2}\right) / 180 \mathrm{~g}$ (glucose) $=1.07 \mathrm{~g}\left(\mathrm{O}_{2}\right) / \mathrm{g}$ (glucose)
O_{2} has low solubility in aqueous broth
$21 \% \mathrm{O}_{2}$ in air at $1 \mathrm{bar}, 25^{\circ} \mathrm{C}$
$0.24 \mathrm{~mol} / \mathrm{m}^{3} \approx 7 \mathrm{mg}\left(\mathrm{O}_{2}\right) / \mathrm{L}$ (broth)

O_{2} solubility

Interface (film)

Equilibrium concentration of O_{2}
O_{2}-solubility ($\mathrm{mol}\left(\mathrm{O}_{2}\right) / \mathrm{m}^{3}$)

Increasing O_{2} solubility

Henry's law

O_{2} transfer rate

Solubility ($\mathrm{mol} \mathrm{O}_{2} / \mathrm{m}^{3}$)

Note: gas phase $\mathrm{O}_{2} / \mathrm{CO}_{2} / \mathrm{N}_{2}$ balances (see unit "Learning about the process: Gas phase balances" in week 2)

O_{2} transfer rate

Increase power input $0.2-2 \mathrm{~m} / \mathrm{h}$
set by the bubble size

$$
\mathrm{T}_{\mathrm{N}, \mathrm{o}}=\mathrm{K}_{\mathrm{L}} \mathrm{~A}\left(\mathrm{c}_{\mathrm{o}}{ }^{*}-\mathrm{c}_{\mathrm{o}}\right)
$$

Maximum O_{2} transfer rate occurs at $\mathrm{c}_{\mathrm{o}}=0$

$$
\mathrm{T}_{\mathrm{N}, 0, \max }=\mathrm{K}_{\mathrm{L}} \mathrm{Ac} \mathrm{c}_{\mathrm{o}}^{*}
$$

Transfer of CO_{2}

$$
\mathrm{T}_{\mathrm{N}, \mathrm{C}}=\left(\mathrm{K}_{\mathrm{L}} \mathrm{~A}\right)_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{c}}-\mathrm{C}_{\mathrm{c}}{ }^{*}\right)
$$

CO_{2} transfer $\left(\mathrm{mol} \mathrm{CO}_{2} / \mathrm{m}^{3}\right)$ is opposite to O_{2}

CO_{2} solubility

$$
\alpha_{\mathrm{c}}=38 \frac{\mathrm{~mol}\left(\mathrm{CO}_{2}\right) / \mathrm{m}^{3}(\text { broth })}{\operatorname{bar}\left(\mathrm{CO}_{2}\right)}
$$

O_{2} solubility

$$
\frac{30 \times \text { larger }}{\mathrm{CO}_{2} \text { inhibition }} \alpha_{0}=1.25 \frac{\mathrm{~mol}\left(\mathrm{O}_{2}\right) / \mathrm{m}^{3}(\text { broth })}{\operatorname{bar}\left(\mathrm{O}_{2}\right)}
$$

Transfer in bioreactors

Complex interactions

Bubble types in a fermenter

smaller bubbles (<2 mm) rigid surface

Surface area

$9 \times$ bubbles of $2 \mathrm{~mm}=$ $1 \times$ bubble of 6 mm

Volume
$27 \times$ bubbles of $2 \mathrm{~mm}=$ $1 \times$ bubble of 6 mm

Non-coalescing
larger bubbles (>6 mm) mobile surface

Coalescence reduces A/V 79\%

Coalescing

Aeration constant:

Bubble column

$$
v_{g s}=\frac{F_{g}}{A_{\perp}}=\begin{aligned}
& \text { Superficial gas velocity }(\mathrm{m} / \mathrm{s}) \\
& \text { Gas flow rate }\left(\mathrm{m}^{3} / \mathrm{s}\right)
\end{aligned}
$$

Aeration constant: Stirred vessel

- single stirrer, standard geometry, coalescing

$$
\mathrm{K}_{\mathrm{L}} \mathrm{a}=0.026\left(\frac{\mathrm{P}_{\mathrm{s}}}{\mathrm{~V}_{\mathrm{L}}}\right)^{0.4} \mathrm{~V}_{\mathrm{gs}}^{0.5} \quad \begin{aligned}
& \text { Kower input impeller } \\
& \text { per volume }\left(\mathrm{W} / \mathrm{m}^{3}\right)
\end{aligned}
$$

- single stirrer, standard geometry, non-coalescing
$\sim 2 \times$ better gas transfer than coalescing

$$
\mathrm{K}_{\mathrm{L}} \mathrm{a}=0.002\left(\frac{\mathrm{P}_{\mathrm{s}}}{\mathrm{~V}_{\mathrm{L}}}\right)^{0.7} \mathrm{~V}_{\mathrm{gs}}^{0.2}
$$

Scale-up: vertical gradient in $\mathrm{C}_{\mathrm{o}}{ }^{*}$

$$
c_{0}{ }^{*}=\alpha_{0} y_{0} p
$$

- p: there is a hydrostatic pressure gradient of 0.1 bar per meter height
- y_{o} : the gas phase is depleted with $\mathbf{0 . 5 5 \%}$ per meter height
(J.J.Heijnen, K. van 't Riet (1984), The Chemical Engineering Journal. 28 B21 - B42)
$\mathrm{Y}_{\mathrm{O}_{2} \text { in }} \quad-\quad \mathrm{Y}_{\mathrm{O}_{2, \text { out }}}=0.0055 \mathrm{H}$
mole fraction $\mathrm{O}_{2} \quad$ mole fraction O_{2}
in inlet gas
in outlet gas
unaerated broth
height in meters

Example $\mathrm{H}=25 \mathrm{~m}$

$$
\begin{array}{ll}
\mathrm{y}_{\mathrm{O}_{2, \text { out }}} & =0.21-0.0055 \times 25=0.21-0.1375=0.0725 \\
\mathrm{C}_{\mathrm{o}}{ }^{*} \text { out } & =1.25 \times 0.0725 \times 1=0.091 \mathrm{~mol} / \mathrm{m}^{3} \\
\mathrm{C}_{0}{ }^{*} \text { in } & =1.25 \times 0.21 \times(1+2.5)=0.919 \mathrm{~mol} / \mathrm{m}^{3}
\end{array}
$$

> Also, there is an opposite gradient in v_{gs} and, hence, K_{L} a (increasing upward)

Average bioreactor geometry, gas transport and mass transfer for the PDO process


```
F
y O2,in}=0.2
y (O2,in}=
P
```

$p=\frac{p_{\text {top }}+p_{\text {bottom }}}{2}=\frac{1+3.5}{2}=2.25 \mathrm{bar}$
$D=\sqrt{\frac{2250 \mathrm{~m}^{3}}{\frac{1}{4} \pi * 25 \mathrm{~m}}=10.7 \mathrm{~m}} \rightarrow \quad \frac{H}{D}=\frac{25 \mathrm{~m}}{10.7 \mathrm{~m}}=2.34$
$\frac{T_{N, o}}{M}=\frac{433207 \mathrm{~mol} \mathrm{O}}{2} / \mathrm{h}, 193 \frac{\mathrm{~mol} \mathrm{O}}{2} / \mathrm{h} \quad\left(\rho_{\text {broth }}=1\right.$ tonne $\left./ \mathrm{m}^{3}\right)$
$F_{N}=\frac{3760969+3361320}{2}=3561145 \frac{\mathrm{~mol}}{\mathrm{~h}}\left(=11.1 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}\right)$
Note: required
$\mathrm{T}_{\mathrm{N}, \mathrm{o}}>\mathrm{T}_{\mathrm{N}, \mathrm{o}, \max }$ so this bioreactor is under-designed
\rightarrow how to improve?

$$
\begin{aligned}
& v_{g s}=\frac{11.1}{\frac{1}{4} \cdot \pi \cdot 10.7^{2}}=0.124 \mathrm{~m} / \mathrm{s} \\
& {C_{o}}^{*}=1.25 \frac{3.5 \cdot 0.21+1 \cdot 0.0725}{2}=0.505 \mathrm{~mol} / \mathrm{m}^{3} \\
& K_{L} a=0.32 \cdot 0.124^{0.7}=0.074 \mathrm{~s}^{-1} \\
& T_{N, o, \max }=K_{L} a \cdot C_{o}{ }^{*}=0.037 \frac{\mathrm{~mol} \mathrm{O}_{2} / \mathrm{s}}{\text { tonne }}=135 \frac{\mathrm{~mol} \mathrm{o}_{2} / \mathrm{h}}{\text { tonne }}
\end{aligned}
$$

Conclusions

Design choices and interacting mechanisms

- Gas phase composition and pressure
- Power input
- Interface mobility
- Reactor type
- Reactor geometry and scale
- Gas-liquid flow, gas-liquid mixing and gas hold-up

$$
T_{N, z}=\left(K_{L} A\right)_{z}\left(c_{z}^{*}-c_{z}\right)
$$

See you in the next unit!

O_{2} transfer rate

