Aerobic PDO process: improving sustainability

Sef Heijnen, Department of Biotechnology, Faculty of Applied Sciences

$$F_{N,out} = 3760969 \text{ (mol/h)}$$

$$y_{O2,out} = 0.0725$$

$$y_{CO2,out} = 0.1614$$

$$y_{w,out} = 0.0600$$

$$p_{top} = 1 bar$$

Gas transfer:

$$O_2 = 433207 \text{ mol } O_2/h$$

$$NH_3 = 35970 \text{ mol } NH_3/h$$

$$H_2O = 225658 \text{ mol } H_2O/h$$

$$CO_2 = 607200 \text{ mol } CO_2/h$$

$$F_{m,out}$$
 (kg/h) = 54920 kg/h

$$F_{N,NH3} = 35970 \text{ (mol/h)}$$

$$C_{S,out} = 85 \cdot 10^{-6} \frac{\text{mol glucose}}{\text{kg}}$$

$$C_{p,out} = 3.00 \text{ mol PDO/kg}$$

$$C_{x,out}$$
= 3.275 mol x/kg

More sustainable: "pushing the limits"

Less consumption/production per mol PDO of everything

- Lower coefficients in the process reaction (lower variable cost)

Lower DSP cost: Higher PDO concentration in broth

Glucose in feed at solubility limit

Lower capital cost: Smaller fermenters

- High O₂ transport rate in the fermenter: week 4
- Low O₂/PDO ratio in process reaction

Lower q_i/q_p ratios: Dissect the process reaction

$$\frac{q_s}{q_p} * C_6 H_{12} O_6 + \frac{q_{NH_4^+}}{q_p} * NH_4^+ + \frac{q_{O_2}}{q_p} * O_2 + \frac{\mu}{q_p} * C_1 H_{1.8} O_{0.5} N_{0.2} + 1 * C_3 H_8 O_2 + \frac{q_{CO_2}}{q_p} * CO_2 + \frac{q_{H_2O}}{q_p} * H_2 O + \frac{q_{H^+}}{q_p} * H^+ + \frac{q_Q}{q_p} (heat)$$

Lowering q_i/q_p ratios: the kinetic approach by increasing q_p by metabolic engineering

	Wild type	Mutant
$q_{p,max}$ (= α)	0.05	0.10
μ_{opt}	0.025	0.014
q _{p,opt}	0.023	0.059
q_s/q_p	1.295	0.95
μ/q _p	1.09	0.24
q_{O2}/q_p	2.63	1.42
C _{s,opt}	85·10 ⁻⁶	192·10 ⁻⁶

Limit of increasing q_p

Process reaction

BB model PDO reaction is the lower limit

BB model PDO reaction $-0.80 C_6 H_{12}O_6 - 0.80 O_2 + 1.00 C_3 H_8 O_2 + 1.80 CO_2 + H_2 O_2$

Lowering q_i/q_p ratios: the stoichiometric approach of metabolic engineering

PDO reaction of the Black Box model:

$$-0.80 C_6 H_{12}O_6 - 0.80 O_2 + 1.00 C_3 H_8 O_2 + 1.80 CO_2 + 0.80 H_2 O_3 + 0.80 C_4 + 0.80 C_5 + 0.80 C_6 + 0.80 C_7 + 0.80 C_8 + 0.80 C_$$

Catabolic part:

$$-0.80/6 C_6 H_{12} O_6 -0.80 O_2 + 0.80/6 CO_2 + 0.80/6 H_2 O_3$$

Anabolic part, "substract catabolic part from PDO reaction":

$$-0.666 C_6 H_{12} O_6 - 0 O_2 + 1.00 C_3 H_8 O_2 + 1 CO_2 + 0 H_2 O_3 + 0 C_3 H_8 O_4 + 0 H_2 O_5 +$$

Limit of stoichiometric approach of metabolic engineering: Anaerobic holy grail

Stoichiometric approach: decrease O₂ stoichiometry

 $0.80 \text{ mol } O_2 / \text{mol PDO} \rightarrow 0?$

- Improved ATP production / O₂
- Less ATP consumption / mol PDO
- ...?

Theoretical PDO reaction

 $-0.6666 \, C_6 H_{12} O_6 - \frac{0}{2} + 1 \, C_3 H_8 O_2 + 1 C O_2 + 110 \, kJ \, Gibbs \, energy$

Limit of stoichiometric approach of metabolic engineering: Anaerobic holy grail

Theoretical PDO reaction

$$-0.6666 \, C_6 H_{12} O_6 - 0 \, O_2 + 1 \, C_3 H_8 O_2 + 1 C O_2 + 110 \, kJ \, Gibbs \, energy$$

Compare: Theoretical Ethanol reaction

$$-0.50 C_6 H_{12}O_6 + 1 C_2 H_6 O + 1 CO_2 + 112 kJ$$
 Gibbs energy

Anaerobic PDO process in principle possible

- More sustainable!!

Lower DSP cost: focus on less water

High PDO concentration

→ More concentrated glucose solution: operate at glucose solubility limit

→ water free feedstock

- Ethanol
- Methanol
- H₂/CO syngas

From sustainable feedstocks

→ High fermentation temperature to increase water evaporation

Big Banana: use mass not volume

For previous calculations we used the volume approach:

- Concentrations in mol/l
- Broth volume V₁ (m³)
- Volume balance

Which is incorrect, minor error in **dilute** systems

However:

- Volume conservation does not exist: 1 | water + 1 | ethanol ≠ 2 | mixture
- Mass conservation holds: 1 kg water + 1 kg ethanol = 2 kg mixture

Recommended approach:

- Define concentration in mol/kg liquid
- Use the total broth mass M in the fermenter
- Use the total mass balance to calculate $F_{m,out}$ (kg/h, see PDO case)
- From mass composition and thermodynamic density correlation you can calculate density, volume outflow and broth volume V₁

See you in the next unit!

