Third Generation PV and Other Ways to Utilize Solar Energy Solar Thermal Energy II - Solar Thermal Heating

Week 6.2.2

Arno Smets

Challenge the future

Heat demand

Source: IEA Electricity/Heat in World in 2009

Solar water heating systems

Types of solar water heating systems

Collector

$$Q_{col} = Q_{sun} - Q_{refl} - Q_{rad} - Q_{conv}$$

 Q_{sun} = incident energy from the sun Q_{col} = heat output of the collector Q_{refl} = reflection losses Q_{conv} = convection losses Q_{rad} = radiation losses

Collector efficiency

Collector

Collector

Flat-plate collector

Concentrating collector

Solar system arrays

Parallel connected Series connected

Energy storage

Energy storage: Water

$$Q_s = V \rho C_p \Delta T$$

$$Q_{loss} = UA\Delta T$$

Energy storage: Solids

Energy storage: Phase change

 $Q_{s} = m[C_{s}(T^{*} - T_{1}) + \lambda + C_{l}(T_{2} - T^{*})]$

Household energy demand

Source: IEA Electricity/Heat in World in 2009

Solar cooling

Solar absorption cooling

Solar dessicant cooling

Combined solar heating and cooling

Solar-mechanical cooling

