GWC-4B Runoff Generation

CTB3300WCx: Introduction to Water and Climate

Prof.dr.ir. Hubert H.G. Savenije

Flood recession curve

Terms used

- Depletion curve
- Base flow
- Dry weather flow

Recession flow is groundwater seepage

Water balance of the renewable groundwater

$$\left(\frac{\mathrm{d}S_g}{\mathrm{d}t} - R + Q_g\right)_{DB} = 0$$

During the dry season

- $Q = Q_g$
- R = 0
- $S = S_g$

Global water resources

Simplified water balance equation

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -Q$$

Linear reservoir

$$S = kQ$$

Solution

$$Q_t = Q_0 \exp\left(-\frac{t}{k}\right)$$

Residence time (k=30 days)

Special properties of $Q_t = Q_0 \exp\left(-\frac{t}{k}\right)$

Derivative of the exponential function

$$\frac{\mathrm{d}Q_t}{\mathrm{d}t} = -\frac{1}{k}Q_0 \exp\left(-\frac{t}{k}\right) = \left(-\frac{Q_t}{k}\right)$$

Integral of the exponential function

$$\int_{t}^{\infty} Q_{t} dt = \int_{t}^{\infty} Q_{0} \exp\left(-\frac{t}{k}\right) dt = -k \left|Q_{0} \exp\left(-\frac{t}{k}\right)\right|_{t}^{\infty} = -k \left(0 - Q_{t}\right) \neq kQ_{t}$$

Effective precipitation

$$P_a = P - \left(\frac{dS_s}{dt} + \frac{dS_u}{dt} \right) - \frac{O}{\text{(during event)}}$$

No 'losses', but pool formation and unsaturated storage increase, later to be evaporated (I and T)

Ways to determine P_a

$$S = kQ$$

Q discharge per unit surface area [L/T]

$$\frac{\mathrm{d}S}{\mathrm{d}t} = P_a - Q$$

hence:

$$k\frac{\mathrm{d}Q}{\mathrm{d}t} = P_a - Q$$

$$\frac{\mathrm{d}Q}{Q - P_a} = -\frac{1}{k} \,\mathrm{d}\,t$$

hence:

$$\ln\left(Q - P_a\right) = -\frac{t}{k} + C$$

If
$$t=0$$
, then $Q=Q_0$

hence:

$$C = \ln\left(Q_0 - P_a\right)$$

Analytical:
$$Q = P_a + (Q_0 - P_a) \exp\left(-\frac{t}{k}\right)$$

Numerical:
$$\Delta S = \left(P_a - \overline{Q}\right) \Delta t$$

$$S_2 = S_1 + \left(P_a - \left(\frac{Q_1 + Q_2}{2}\right)\right) \Delta t$$

$$S_1 = kQ_1 \quad \text{and} \quad S_2 = kQ_2$$

$$Q_{2} = \frac{k - 0.5\Delta t}{k + 0.5\Delta t} Q_{1} + \frac{\Delta t}{k + 0.5\Delta t} P_{a}$$

More appropriate for groundwater dominated catchments

Example storage principle

6

Runtime principle

- Rational method
- Runoff is proportional to the contributing surface area, which increases in time
- Runoff is proportional to the effective precipitation, hence linearity
- Analogy with ping-pong balls

Runtime principle

Assumptions of runtime principle

- Runtime is time invariant (stationarity)
- Runtime is proportional to contributing area
- Linearity between Q and P_a
- Precipitation is equally distributed in space
- Often used in urban environments (impervious surfaces, urban drains, small impervious catchments)

Runtime principle equations

$$Q(t) = P_a \min(A, A_t) = P_a A \min\left(1, \frac{A_t}{A}\right)$$

- $Q \text{ in } [L^3T^{-1}], q \text{ in } [LT^{-1}]$
- P_a assumed constant over an interval
- When A_t equals A (total surface area of catchment), then $t=t_c$ (time of concentration)
- Superposition

$$q(t) = \frac{Q(t)}{A} = P_a \min\left(1, \frac{A_t}{A}\right)$$

Runtime principle

Linear increase of A_t:

$$A_t = \frac{A}{t_c} t$$

$$q(t) = P_a \min\left(1, \frac{A_t}{A}\right) = P_a \min\left(1, \frac{t}{t_c}\right)$$

Runtime principle numerical equations

Superposition of subsequent events:

$$Q(t) = \sum_{i=1}^{n} \Delta P_{a,i} \cdot A \min \left(1, \frac{\max \left(A_{t-\Delta t(i-1)}, 0 \right)}{A} \right)$$

$$q(t) = \sum_{i=1}^{n} \Delta P_{a,i} \min \left(1, \frac{\max(t - \Delta t(i-1), 0)}{t_c} \right)$$

Runtime principle results

→ Time (hours)

0.5

Runtime principle questions

- Why must the time step Δt be smaller than t_c ?
- What happens if Δt is equal to t_c ?
- Under which conditions can we apply the runtime principle?

Applicability of the different methods

Storage principle

- 'Flat areas'
- Groundwater dominated catchments

Runtime principle

- Steep impervious catchments
- Surface runoff

'Real' catchments

- Unit hydrograph
- Hydrological modelling

Challenge

- This was treacherously simple
- Real catchments are more complex
- There still is a world to discover in hydrology

GWC-4B Runoff Generation

CTB3300WCx: Introduction to Water and Climate

Prof.dr.ir. Hubert H.G. Savenije

